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We study the nonlinear response of the equatorial shallow-water system at rest to
a localized long-wave perturbation with small meridional to zonal aspect ratio. An
asymptotic theory of such a response (adjustment) for small Rossby numbers is
constructed. Possible scenarios of nonlinear adjustment are classified depending on
the relation between the Rossby number and the aspect ratio. The calculations show
that slow, geostrophically balanced Rossby and Kelvin waves and the fast inertia–
gravity waves are dynamically split off. The fast component of motion exerts no
drag on the slow one, which is proved by direct computation. Evolution equations
are derived for both components confirming earlier results which were obtained by
ad hoc filtering of one of the components of motion. A well-defined initialization
procedure is developed for each component.

Due to the breaking of non-dispersive Kelvin waves, the asymptotic theory has
obvious limits of validity. In order to go beyond these limits and to study strongly
nonlinear effects during the adjustment process we undertook high-resolution shock-
capturing numerical simulations based on recent progress in finite-volume numerical
methods. The simulations confirm theoretical results but also reveal new effects such
as fission of a strongly nonlinear Rossby-wave packet into a sequence of equatorial
modons or jet formation in the wake of a breaking Kelvin wave.

1. Introduction
As is well-known, dynamics of the tropical atmosphere and ocean is a special case

due to the change of sign of the Coriolis force at the equator. The response of the
tropical atmosphere and ocean at rest to a localized perturbation will therefore be
different from the higher latitudes.

On the mid-latitude f - (or β-)plane this response consists of an adjustment of
the initial perturbation to a geostrophically balanced vortex state via emission of
inertia–gravity waves. The balanced state evolves slowly in time according to (a
version of) the standard quasi-geostrophic dynamics. The geostrophic adjustment is
one of the fundamental processes in geophysical fluid dynamics (see e.g. Gill 1982). A
nonlinear asymptotic theory of geostrophic adjustment in the mid-latitude context was
developed recently by Reznik, Zeitlin and Ben Jelloul (2001), and Zeitlin, Reznik &
Ben Jelloul (2003) where it was shown that the dynamical separation (splitting)
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of the fast inertia–gravity waves and slow quasi-geostrophic motions persists over
several orders in the Rossby number (see other relevant references on splitting in the
above-mentioned papers). The dynamical separation in mid-latitude dynamics may
be inferred from the form of the dispersion relation for small perturbations around
the rest state with its characteristic spectral gap between the inertia–gravity waves of
minimal frequency f and quasi-geostrophic motions of minimal frequency zero.

In the present paper we study the process of geostrophic adjustment and splitting
of slow and fast motions on the equatorial β-plane in the framework of the
rotating (equatorial) shallow-water model (ERSW). Although the simplest, this model
provides a conceptual basis for understanding fundamental processes in the equatorial
atmosphere and ocean (cf. e.g. Philander 1990; for a derivation of the ERSW from
the equatorial primitive equations see Majda 2003). There has been a recent increase
in interest in this model in the context of tropical circulation: Sobel, Nilsson &
Polvani (2001); Majda & Klein (2003); Bretherton & Sobel (2003). Usually a reduced,
balanced form of the ERSW is used in applications corresponding to the long-wave
approximation (Philander 1990). The possibility of such reduction is based on the fact
that in the dispersion relation for equatorial waves there is a spectral gap between the
slow Kelvin and Rossby waves on the one hand, and the fast inertia–gravity waves
and the Yanai wave on the other hand (cf. figure 1 below). As in our previous work
we make full technical use of the presence of the spectral gap and, in the context
of equatorial geostrophic adjustment, construct an asymptotic theory which allows
us to prove dynamical splitting of the balanced and imbalanced components of an
arbitrary localized initial perturbation, and to establish its limits.

However, the situation on the equator differs significantly from that of the mid-
latitude f -plane because the magnitude of the gap depends on the wavelength and
tends to zero with increasing wavenumber. Therefore, asymptotic theory may be
consistently developed only for long-wave perturbations (cf. Majda 2003). Thus, we
develop an asymptotic (in Rossby number Ro) multi-timescale theory of geostrophic
adjustment of a localized perturbation with small aspect ratio δ (meridional over zonal
extent). We classify the dynamical regimes arising for different relations between Ro

and δ. We completely quantify slow and fast motions, obtain their respective equations
of motion with proper initial conditions, and demonstrate their dynamical splitting.
The equatorial dynamics sets natural limits on the validity of the asymptotic approach
because of the Kelvin wave breaking. To go beyond these limits, we perform high-
resolution long-time numerical simulations of the adjustment process which allows
extension to fully nonlinear regimes and longer times and better understanding of the
details of the adjustment scenario.

The paper is organized as follows. In § 2 after a brief reminder about equatorial
shallow-water equations we introduce the characteristic scales and identify slow and
fast motions with small aspect ratio. We then analyse qualitatively the dynamical
regimes corresponding to different relations between Ro and δ. In § 3 we present
the method and the main results of an asymptotic theory of the geostrophic
adjustment in the Ro = O(δ2) regime. In § 4 we present the results of high-resolution
numerical simulations of the equatorial adjustment. Section 5 contains a summary
and discussion. A reminder on linear equatorial waves, with special attention paid
to the initialization of each type of wave for arbitrary initial conditions, is given
in Appendix A as well as some useful formulae for parabolic cylinder functions.
Conditions for the mean flow to prevent the Kelvin-wave breaking are presented in
Appendix B. The details of calculations of § 3 are presented in Appendix C. The
initialization procedure for the Ro = O(δ2) nonlinear adjustment regime is presented
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Figure 1. Dispersion curves for equatorial waves. c is the phase speed of the Kelvin waves, k
is the zonal wavenumber. The domain of long waves is indicated. Two first meridional Rossby
modes and two first meridional inertia–gravity waves are shown.

in Appendix D. Appendix E contains the proof of absence of the fast-motion drag
onto the slow motions for the Ro = O(δ2) adjustment. A brief description of our
numerical procedure and a discussion of the Rankine–Hugoniot conditions and
potential vorticity changes due to shocks is presented in Appendix F.

2. The long-wave scaling in the ERSW: general considerations and
classification of possible dynamical regimes

The ERSW equations are

∂tv + v · ∇v + βy ẑ ∧ v + g∇h = 0, (2.1)

∂th + ∇ · (vh) = 0, (2.2)

where v = (u, v) is velocity field, h is the free-surface elevation (for the fluid at rest
h = H0), g is acceleration due to gravity and βy is the equatorial Coriolis parameter.
Throughout this paper we are interested in the geostrophic adjustment, i.e. the Cauchy
problem with given initial conditions:

u = uI (x, y), v = vI (x, y), h = hI (x, y). (2.3)

Everywhere below we impose vanishing boundary conditions at infinity in the
meridional direction and systematically use expansions in parabolic cylinder functions
φn(y), cf. Appendix A.

The dispersion relation for linear equatorial waves, obtained by linearization of
(2.1), (2.2) in Appendix A, displays a spectral gap for the long (in the zonal direction)
waves between the Kelvin waves and Rossby waves on the one hand and Yanai and
inertia–gravity waves, on the other, cf. figure 1. Therefore, one may assume that for
the long-wave part of the spectrum the slow modes (Kelvin, Rossby) are dynamically
split from the fast modes (Yanai, inertia–gravity) in the weakly nonlinear regime, as
was the case on the mid-latitude f -plane. We will prove this hypothesis below.
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2.1. The choice of scaling

The long-wave perturbations have a characteristic scale in the zonal direction which
is much larger than the meridional one, and we introduce the aspect ratio δ, where

δ =
Ly

Lx

� 1, Ly =
(gH0)

1/4

√
β

. (2.4)

Correspondingly, the characteristic time and velocity scales are

T =
1

βLy

, U =
g�H

βL2
y

, (2.5)

where �H is a typical free-surface displacement, and U is the scale of a typical
geostrophically balanced velocity perturbation related to �H . The Rossby number
Ro = ε is defined as

ε =
U

βL2
y

=
�H

H0

. (2.6)

The interpretation of this parameter is twofold, as it also has the meaning of the
Froude number (cf. Majda & Klein 2003; Majda 2003) if we recall that

√
gH0 is

the typical velocity of the (surface) gravity waves: ε = U/
√

gH0. Note, that with the
scaling (2.4), (2.5) the acceleration, the Coriolis, and the pressure-gradient terms in
(2.1) are of the same order. Note also that smallness of the geopotential perturbations
(i.e. that of ε as defined in (2.6)) is a key ingredient of the weak temperature gradients
approximation in studies of the tropical circulation (cf. e.g. Majda & Klein 2003;
Bretherton & Sobel 2003) although we never consider below a forced-dissipative
problems typical for such studies.

With our scaling the basic equations (2.1), (2.2) take the form

ut + δεuux + εvuy − yv = − δhx, (2.7)

vt + δεuvx + εvvy + yu = − hy, (2.8)

ht + vy + δux + ε (hv)y + δε (hu)x = 0. (2.9)

2.2. The slow motion: long Rossby and Kelvin waves

To analyse the long Rossby and Kelvin waves we impose an additional restriction
of smallness of the meridional velocity v → δv which follows from linear analysis,
cf. Appendix A. For consistency this implies a change of timescale: t → t1 = δt .
Therefore, the long Rossby and Kelvin waves are slow and we have

ut1 + εuux + εvuy − yv = − hx, (2.10)

δ2vt1 + δ2εuvx + δ2εvvy + yu = − hy, (2.11)

ht1 + vy + ux + ε (hv)y + ε (hu)x = 0. (2.12)

At the lowest order of the perturbation theory (both ε and δ are supposed to be
small, their relative value to be fixed below) it follows that

u
(0)
t1 − yv(0) + h(0)

x = 0, (2.13)

yu(0) + h(0)
y = 0, (2.14)

h
(0)
t1 + u(0)

x + v(0)
y = 0, (2.15)

thus giving the equations for slow-propagating linear Rossby and Kelvin waves
(cf. Appendix A). The next terms of the perturbation series are of the order of
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max(δ2, ε). Equations for these terms, with introduction of the corresponding slow
time t2 = max(δ2, ε)t1, are written as follows:

u
(1)
t1 − yv(1) + h(1)

x = − ε

max(δ2, ε)

(
u

(0)
t2 + u(0)u(0)

x + v(0)u(0)
y

)
, (2.16)

yu(1) + h(1)
y = − δ2

max(δ2, ε)
v

(0)
t1 , (2.17)

h
(1)
t1 + u(1)

x + v(1)
y = − ε

max(δ2, ε)

[
h

(0)
t2 +

(
h(0)u(0)

)
x
+

(
h(0)v(0)

)
y

]
. (2.18)

Let us analyse qualitatively what the different asymptotic relations between the
parameters ε and δ imply for Rossby waves.

If δ2 � ε, equations (2.16)–(2.18) become linear. Because it is the term v
(0)
t1 on the

right-hand side of (2.17) which provides dispersion in the system, within this range of
parameters dispersion overcomes nonlinearity and, in the context of the geostrophic
adjustment, any initial packet of Rossby waves will be dispersed.

If δ2 � ε the nonlinearity overcomes dispersion. General properties of this regime
were recently presented by Majda (2003).

A non-compensated nonlinearity usually means breaking. However, the precise
dynamical meaning of this process is not clear at this stage. For instance, it is
known that equatorial modons may exist for strong nonlinearities (Boyd 1985). Does
equatorial adjustment with subsequent Rossby-wave ‘breaking’ produce them in this
regime? We give some elements of the answer below.

Finally, at δ2 ∼ ε, the advective nonlinearity and dispersion may compensate each
other and form solitary waves from the initial perturbation in the Rossby-wave part of
the spectrum. A typical equation combining the effects of weak nonlinearity and weak
dispersion is the Korteweg-de Vries (KdV) or modified Korteweg-de Vries (mKdV)
and one may expect that the Rossby-wave packet will obey one of them in this regime
and form solitons (Boyd 1980a)

The long Kelvin waves should always break (Boyd 1980b; Ripa 1982), because
they are defined by the condition v(0) = 0 and are, thus, non-dispersive whatever
the relation between δ and ε. Their breaking, therefore, consists of the formation of
a hydraulic jump. The breaking of Kelvin waves may be prevented by a fine-tuned
mean zonal flow (Boyd 1984). This situation is discussed in Appendix B.

2.3. The fast motion: long inertia–gravity and Yanai waves

For these waves u ∼ v and equations (2.7)–(2.9) remain unchanged. At the lowest
order we have

u
(0)
t − yv(0) = 0, (2.19)

v
(0)
t + yu(0) + h(0)

y = 0, (2.20)

h
(0)
t + v(0)

y = 0. (2.21)

A single equation for v(0) follows from this system (cf. Gill 1980):

v
(0)
t t + y2v(0) − v(0)

yy = 0, (2.22)

which has the following solution in terms of the parabolic cylinder functions φn(y):

v(0) =

∞∑
n=0

v(0)
n (x, t)φn(y), v(0)

n = A+
0n

(x, t1)e
iσnt + c.c, σn =

√
2n + 1. (2.23)
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Thus, at the lowest order we obtain non-propagating oscillations with frequencies σn

which are well separated from the zero frequency (in the fast time t) of long Rossby
and Kelvin waves (cf. figure 1).

In the limit ε → 0, i.e. neglecting nonlinearity in (2.7)–(2.9), the next approximation
in δ gives a non-dispersive eastward propagation of the envelope A0n

in the slow time
t1 = δt:

A
±
0n

= A
±
0n

(
x − t1

2σ 2
n

)
(2.24)

which is consistent with the group velocity estimate for long waves (cf. figure 1. At
the next order in δ dispersion will give rise to evolution in t2 = δ2t .

If, on the other hand, the limit δ → 0 is taken in (2.7)–(2.9) (infinitely long waves),
the resonances generated by nonlinearity appear only at O(ε2) because, as easily seen
from (2.23), the O(ε) bilinear combinations of the oscillations of the form (2.23) are
non-resonant: √

2k + 1 	=
√

2l + 1 ±
√

2m + 1 (2.25)

for any integer k, l, m. At the same time, the cubic combinations appearing at O(ε2)
do produce resonances.

Hence, in order to counter-balance the dispersion of the envelope of the fast waves
by nonlinearity we need to have δ ∼ ε. In this regime one can expect that the dynamics
of the envelope A0n

in t2, as is usual for a weakly nonlinear envelope evolution, obeys
the nonlinear Schrödinger equation, or a system of coupled Schrödinger equations if
the simultaneous evolution of several modes of the type (2.23) is considered. Thus
formation of the envelope solitons (cf. Boyd 1983) is possible. Under the condition of
very weak dispersion, δ � ε, the nonlinear interactions give a small frequency shift
(no breaking). Under the condition of strong dispersion, δ � ε, the envelope A0n

is
slowly dispersed.

2.4. A summary of possible weakly nonlinear dynamical regimes in the
long-wave approximation

In the absence of mean flow the results of the preceding qualitative analysis may be
summarized as follows

For Rossby numbers up to δ2 Rossby waves are dispersed as well as the envelope
of the gravity waves; Kelvin waves break forming hydraulic jumps.

For Rossby numbers of order δ2 Rossby waves form solitons, the envelope of the
gravity waves is dispersed and Kelvin waves break.

For Rossby numbers in the interval (δ2, δ) Rossby and Kelvin waves break, the
envelope of the gravity waves is dispersed.

For Rossby numbers of the order of δ, Rossby and Kelvin waves break, the envelope
of the gravity waves obeys the nonlinear Schrödinger equation and forms modulation
solitons.

For Rossby numbers greater than δ Rossby and Kelvin waves break and the
envelope of the gravity waves has a nonlinear frequency shift.

We have performed an asymptotic analysis of all the aforementioned regimes which
confirms these qualitative conclusions. As the dynamically most interesting example
(appearance of Rossby solitons) we present below a detailed analysis of the regime
ε ∼ δ2. For typical Rossby numbers of order 0.1 for the balanced motions in the
equatorial atmosphere (cf. e.g. Majda & Klein 2003) and of order 0.3 for the ocean (cf.
e.g. Boyd 1980) the typical horizontal scales in this regime correspond to thousands
of kilometres (planetary-scale perturbations) in the atmosphere and to hundreds of
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kilometres (mesoscale) in the ocean. They are, hence, appropriate e.g. for the oceanic
perturbations due to equatorial westerly wind bursts (cf. Philander 1990).

3. The long-wave adjustment at Ro = O(δ2)

In this regime, the basic equations (2.7)–(2.9) take the form

ut + δ3uux + δ2vuy − yv = −δhx, (3.1)

vt + δ3uvx + δ2vvy + yu = −hy, (3.2)

ht + vy + δux + δ2 (hv)y + δ3 (hu)x = 0. (3.3)

We analyse below the geostrophic adjustment in this system at the first four orders
in δ. A solution of (3.1)–(3.3) is sought in the form of an asymptotic series in δ:

u = u(0)(x, y, t, t1, t2, . . .) + δu(1)(x, y, t, t1, t2, . . .) + . . . , (3.4)

and similarly for the fields v and h. Here the slow timescales t1 = δt, t2 = δ2t, . . .

are introduced. Each field f (x, y, t, t1, t2, . . .) is represented as a sum of the slow
component f̄ (x, y, t1, t2, . . .) defined as the average of f over the fast time t , and
the fast component f̃ = f − f̄ . At each order we describe the evolution of both
slow and fast components of the flow and show how to split the initial conditions
unambiguously and obtain well-posed Cauchy problems for both components. The
fast and slow variables are not mutually independent due to nonlinearity: the slow
evolution of the fast fields depends on the slow ones (guiding) and, in principle, the
self-interaction of the fast components should influence the slow fields. However, we
show (and this is the most imortant theoretical result of the paper) that at least at
the leading order there is no fast-component drag upon the slow component.

In the next subsection we explain the general scheme of calculations. Technical
details are relegated to Appendix C. The initialization procedure is presented in the
Appendix D. Note that results obtained at order n provide a description of the
system for times up to 1/(δn+1T ). Readers not interested in technical details can
proceed directly to § 3.2.

It should be noted that the results on the slow motion itself which we obtain
below are well-known: the KdV dynamics of weakly nonlinear equatorial Rossby
waves (3.37) was discovered by Boyd (1980a). The overturning of the equatorial
Kelvin waves (3.38) was also demonstrated about 20 years ago by Boyd (1980b) and
Ripa (1982). However, these studies started from a situation close to the geostrophic
balance, i.e. they filtered the fast component of motion from the beginning. The
novelty of our approach is that without any filtering we prove that fast and slow
motions are dynamically split and the old results are consistent. We also complete
them by providing the corresponding evolution of the fast component.

3.1. The method

Equations for the nth approximation are taken in the form

u
(n)
t − yv(n) + u

(n−1)
t1 + h(n−1)

x = P (n)
u , (3.5)

v
(n)
t + yu(n) + h(n)

y = P (n)
v , (3.6)

h
(n)
t + h

(n−1)
t1 + v(n)

y + u(n−1)
x = P

(n)
h . (3.7)

Simultaneously the equation for v from the previous step is used:

v
(n−1)
t + yu(n−1) + h(n−1)

y = P (n−1)
v . (3.8)
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Here, by definition,

u(−1) = v(−1) = h(−1) = 0, P (−1)
u = P (−1)

v = P
(−1)
h = 0, (3.9)

and the right-hand sides for the first three orders are

P (0)
u = P (0)

v = P
(0)
h = 0, (3.10)

P (1)
u = 0, P (1)

v = −v
(0)
t1 , P

(1)
h = 0, (3.11)

P (2)
u = −u

(0)
t2 − v(0)u(0)

y , P (2)
v = −

(
v

(0)
t2 + v

(1)
t1 + v(0)v(0)

y

)
,

P
(2)
h = −h

(0)
t2 −

(
h(0)v(0)

)
y
,

(3.12)

P (3)
u = −u

(0)
t3 − u

(1)
t2 − v(1)u(0)

y − v(0)u(1)
y − u(0)u(0)

x , (3.13)

P
(3)
h = −h

(0)
t3 − h

(1)
t2 −

(
h(0)v(1) + h(1)v(0)

)
y

−
(
h(0)u(0)

)
x
, (3.14)

and we will not need the explicit expression for P (3)
v in what follows. We obtain, by

averaging (3.5)–(3.8), the following equations for the slow fields:

ū
(n−1)
t1 + h̄(n−1)

x − yv̄(n) = P̄ (n)
u , (3.15)

yū(n) + h̄(n)
y = P̄ (n)

v , (3.16)

h̄
(n−1)
t1 + ū(n−1)

x + v̄(n)
y = P̄

(n)
h , (3.17)

yū(n−1) + h̄(n−1)
y = P̄ (n−1)

v . (3.18)

Among these equations (3.15), (3.17), and (3.18) are sufficient to determine the slow
motion, while (3.16) will be used to define the fast motion in the next approximation.
Correspondingly, for the fast fields we obtain

ũ
(n)
t − yṽ(n) = P̃ (n)

u − ũ
(n−1)
t1 − h̃(n−1)

x ≡ R̃(n)
u , (3.19)

ṽ
(n)
t + yũ(n) + h̃(n)

y = P̃ (n)
v ≡ R̃(n)

v , (3.20)

h̃
(n)
t + ṽ(n)

y = P̃
(n)
h − h̃

(n−1)
t1 − ũ(n−1)

x ≡ R̃
(n)
h . (3.21)

The key idea is to solve for the variable v̄(n) first, and then to determine ū(n−1) and
h̄(n−1). By differentiating and combining equations (3.15)–(3.18) we can obtain a single
equation for v̄(n):(

v̄(n)
yy − y2v̄(n)

)
t1

+ v̄(n)
x =

(
yP̄ (n)

u + P̄
(n)
hy

− P̄ (n−1)
vt1

)
t1

−
(
yP̄

(n)
h + P̄ (n)

uy
− P̄ (n−1)

vx

)
x
, (3.22)

and an equation for its initial value v̄
(n)
I :

v̄
(n)
Iyy

− y2v̄
(n)
I =

(
ū

(n−1)
Iy

+ yh̄
(n−1)
I

)
x
+

(
yP̄ (n)

u + P̄
(n)
hy

− P̄ (n−1)
vt1

)
I
. (3.23)

As usual, the slow evolution follows from removal of resonant terms on the right-
hand side of (3.22). We proceed by subsequent averaging of this equation in t2, t3
to determine the corresponding evolution in slow times of the previous-order slow
components. After resonances are removed, equation (3.22) can be solved and v̄(n)

determined. It should be stressed that the analysis of resonances on the right-hand side
of (3.22) allows only the slow evolution of the Rossby-wave part of the perturbation to
be fixed, because the linear operator on the left-hand side of this equation corresponds
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precisely to Rossby waves. To describe the slow evolution of the Kelvin-wave part we
add equations (3.15) and (3.17) and obtain(

ū(n−1) + h̄(n−1)
)

t1
+

(
ū(n−1) + h̄(n−1)

)
x

= −v̄(n)
y + yv̄(n) + P̄ (n)

u + P̄
(n)
h . (3.24)

The linear operator on the right-hand side here corresponds to Kelvin waves and the
resonances are absent if [

v̄(n)
y − yv̄[n

]
(K)

=
[
P̄ (n)

u + P̄
(n)
h

]
(K)

, (3.25)

where the subscript (K) means that only the terms ∝ U (x − t1) (cf. (3.32) below) are
considered in the bracketed expression. A bounded solution of this equation exists if∫ +∞

−∞
dy φ0

[
P̄ [n)

u + P̄
(n)
h

]
(K)

= 0, (3.26)

which gives a slow evolution of the Kelvin waves of preceding orders (see below and
Appendix C).

Knowing v̄(n) and having removed resonances from the right-hand side of (3.15),
(3.17), and (3.18) we may find ū(n−1) and h̄(n−1) from (3.15), and (3.17), and thus
determine the slow component of motion at the given order. The order (n − 1)
slow component is a sum of free Rossby and Kelvin waves and some ‘forced’ terms
generated by nonlinear interactions of preceding-order fields. The slow evolution of
order (n−1) Rossby and Kelvin waves is determined from the analysis of the (n+1)th
order, etc.

The same strategy is used for the fast component. From (3.19)–(3.21) we obtain an
equation for ṽ(n):

ṽ
(n)
t t + y2ṽ(n) − ṽ(n)

yy = R̃(n)
vt

− R̃
(n)
hy

− yR̃(n)
u , (3.27)

with initial conditions:

ṽ
(n)
I = −v̄

(n)
I , (3.28)

ṽ
(n)
t

∣∣
t=0

= −
[
yu(n) + h(n)

y − P (n)
v

]
t=0

. (3.29)

Removal of resonances from the right-hand side of this equation gives slow evolution
of the fast variables. The linear operator on the l.h.s. corresponds to inertia–gravity
and Yanai waves. Hence, the dependence on slow times of these fast waves, i.e.
modulation, will be thus determined. After removal of resonances equation (3.27)
may be solved and ṽ(n) determined. Knowing ṽ(n), ũ(n) and h̃(n) may be found from
(3.19) and (3.21).

It is easy to see that the fast and the slow variables are not mutually independent.
The right-hand side of (3.27) contains terms of the form ū(k)ṽ(m), k, m < n and,
therefore, the slow evolution of the fast fields depends on slow fields (guiding). In
turn, the right-hand side of equations (3.15)–(3.18) contains terms of the type 〈ũ(k)ṽ(m)〉
and, in principle, the fast motion should influence the slow motion.

3.2. The main results

3.2.1. Fast motion

We show (see Appendix C) that the fast motion consists of (infinitely) long
inertia–gravity and Yanai waves of the form (2.23). The slow-time dependence of
the modulated amplitude A0n

is given by (2.24). At the next approximation A0n

acquires a nonlinear frequency shift and a frequency shift due to the mean zonal flow
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represented by Φ (M), cf. Appendix C:

A
±
0nt2

± i

2σn

(
1 − 3

4σ 4
n

)
A

±
0nxx

± i

2σn

Φ (M)
nn A

±
0n

= 0. (3.30)

The first correction to the amplitude obeys the following equation:

A
±
1nt1

+
1

2σ 2
n

A
±
1nx

= ∓ i

2σn

(
Φ (K)

nn (x, t1) + Φ (R)
nn (x, t1)

)
A

±
0n

, (3.31)

where Φ (K), Φ (R) represent contributions from the slow Kelvin and Rossby waves,
respectively, cf. Appendix C. Thus, the modulation of the fast component is guided
by the slow one.

3.2.2. Slow motion

The full slow solution (ū(0), v̄(1), h̄(0)) is a sum of three contributions. All of them
are unambiguously defined. The first one, (ū(0)

(K), 0, h̄
(0)
(K)) is the eastward-propagating

Kelvin-wave part:

ū
(0)
(K) = h̄

(0)
(K) = U0(x − t1)φ0(y). (3.32)

The second one is the westward-propagating Rossby-wave part (ū(0)
(R), v̄

(1)
(R), h̄

(0)
(R)):

ū
(0)
(R) =

1

2

∞∑
n=1

V̄1n
(x + c̄nt1)

[√
2(n + 1)

1 + c̄n

φn+1(y) −
√

2n

1 − c̄n

φn−1(y)

]
, (3.33)

v̄
(1)
(R) =

∞∑
n=1

v̄(1)
n (x + c̄nt1)φn(y), (3.34)

h̄
(0)
(R) =

1

2

∞∑
n=1

V̄1n
(x + c̄nt1)

[√
2(n + 1)

1 + c̄n

φn+1(y) +

√
2n

1 − c̄n

φn−1(y)

]
, (3.35)

where V̄1nx
= v̄(1)

n , and c̄n = 1/(2n + 1) = σ 2
n . The third one is an arbitrary

geostrophically balanced zonal flow (ū(0)
(M), 0, h̄

(0)
(M)):

yū
(0)
(M) + h̄

(0)
(M)y

= 0. (3.36)

The slow evolution of the Rossby-wave component is given by the KdV equation

V̄1nt3
+ αnV̄1nxxx

+ βnV̄1n
V̄1nx

= 0. (3.37)

The coefficients αn, βn of the KdV equation are constants depending only on the
meridional structure of the mode (see Appendix C for details). Hence the Rossby-
wave component of the initial localized perturbation will split into a sequence of
westward-propagating solitons.

The slow evolution of the Kelvin-wave component is given by the Riemann wave
equation

U0t3
+

1

π1/4

√
3

2
U0U0x

= 0 (3.38)

leading to overturning in finite time (in terms of the third slow time t3).

3.2.3. Fast–slow motion splitting

The results obtained for the slow motion are rather surprising, because the evolution
equations (3.37) and (3.38) do not contain any trace of the fast component, in spite
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of the aforementioned influence of the fast fields upon the slow ones. We prove by a
direct calculation in Appendix E that the averaged fast–fast terms are not resonant
and, hence, make no contribution (drag) to the slow-field evolution equations at least
up to times O(δ−4T ). Thus, we demonstrate that the slow and the fast motions are
dynamically split and justify the naive filtering (i.e. throwing away) of the fast waves
which provides a ‘fast-track’ derivation of (3.37) and (3.38).

3.3. Discussion of the asymptotic theory results

Thus, detailed calculations confirm the scenario proposed in § 2 for the regime Ro ∼ δ2.
We have shown that an arbitrary long-wave equatorial perturbation with small
characteristic Rossby number splits into fast and slow components. The former is
a packet of inertia–gravity and Yanai waves with a Doppler-shift due to the slow
components and a nonlinear frequency shift. The fast component does not influence
the slow one. The latter is a combination of Rossby and Kelvin waves propagating in
opposite directions along the equator and obeying their own modulation equations.
For Rossby waves the evolution equation is KdV which is known to produce a
sequence of solitons from a localized initial disturbance. For Kelvin waves the
evolution equation is a simple-wave equation which produces overturning in finite
time. Thus, within the limits of validity of the non-dissipative asymptotic theory, i.e.
for times of the order 1/(δ3T ) the dynamical splitting of slow and fast components is
proved. Note that going farther in the asymptotic expansions does not make sense as
the asymptotic theory breaks down once Kelvin waves overturn and generate smaller
characteristic scales.

Therefore, we have given a proof that the filtering of the fast component applied in
the works of Boyd (1980a, b) and Ripa (1982) is legitimate and that the fast motion
exerts no drag (up to times O(1/δ3T )) upon the slow motion. However, as was just
mentioned, the non-dissipative asymptotic theory has intrinsic limitations due to the
breaking of Kelvin waves. For localized initial disturbances on the infinite equatorial
beta-plane these limitations do not affect the westward-moving Rossby-wave part of
the perturbation much, as Kelvin waves move in the opposite direction. However, for
the eastward-moving part of the perturbation the overturning of the Kelvin waves
will, presumably, destroy splitting. Even for the Rossby-wave part of the spectrum
the question of persistence of non-interaction with the fast waves arises for times
much greater than 1/(δ3T ). The practical question of robustness of the asymptotic
theory also arises (as its convergence cannot be proved), i.e. the question of the
behaviour of the system for small but finite Ro and δ. It should be emphasized that
certain dynamical phenomena cannot be described by the single-spatial-scale theory
of preceding sections by construction, for instance the non-local resonant interactions
of triads including very short and very long equatorial waves (Ripa 1982). Another
question beyond the limits of the present theory is that of Rossby-wave breaking
for strong nonlinearities with possible formation of modons, which was already
mentioned in § 3.

In order to test the predictions of our theory and to go beyond its formal limits we
have undertaken a high-resolution numerical simulation of the geostrophic adjustment
in the equatorial shallow-water model.

4. High-resolution numerical simulations of the equatorial adjustment problem
When performing numerical simulations of the equatorial adjustment problem it

is important to resolve well both large and small scales simultaneously, and not to
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Figure 2. Adjustment of a localized large-scale height anomaly symmetric with respect to the
equator. The Rossby-wave part of the initial perturbation is moving west, the Kelvin-wave part
is moving east and breaks in finite time forming a shock. A packet of inertia–gravity waves
centred at the location of the initial perturbation’s maximum (x = 30) is slowly dispersed. The
isolines of h at values 0.98, 1.02, 1.05, 1.1 are shown at each panel. Here and below darker
(lighter) shading represents negative (positive) height anomaly, respectively.

lose resolution for long enough times. It is crucial to have a reliable shock-capturing
scheme allowing resolution of the wave-breaking process. The recent progress in the
development of finite-volume shock-capturing numerical schemes for shallow-water
problems (Audusse et al. 2003) provides an optimal framework for such studies (see
Appendix F).

4.1. The adjustment process

The first numerical simulation we performed was to test a general scenario of
equatorial adjustment in the case of moderate/strong nonlinearities. We start from a
localized large-scale height perturbation with no initial velocity (hI = hI (x, y), uI =
vI = 0). The initial height field is Gaussian, with meridional extent Ly , aspect ratio
δ = 0.3, and maximal non-dimensional amplitude (Rossby number) �H/H0 = 0.3
with H0 = 1. The initial perturbation is symmetric with respect to the equator. For
simplicity of calculation the zonal boundary conditions are periodic. In figure 2 we
present the evolution of this perturbation up to 40T . The length unit in all figures
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Figure 3. Fast oscillations, as measured at the initial perturbation location
at x0 = 30, y0 = 0.

below is Ly (cf. (2.4)), the time scale is T (cf. (2.5)). The simulation shows that the
initial perturbation rapidly splits to form a westward-moving Rossby-wave packet,
an eastward-moving Kelvin wave, and a slowly dispersing packet of inertia–gravity
waves. Kelvin- and Rossby-wave parts have Rossby numbers of order 0.1. The Kelvin
wave breaks forming a sharp front (Kelvin front) but the breaking does not produce
much gravity-wave activity – but see below. The fast oscillations are observed for the
whole run duration, cf. figure 3. Their frequency corresponds to that of the lowest
inertia–gravity mode on figure 1. This is the fast part of the motion, as the initial
conditions have a non-zero projection onto the fast component – cf. Appendix D.
Mutual advection apart, no significant interaction between slow and fast motions is
observed. We thus see that the slow–fast splitting remains valid for not too small δ

and Ro and that although the Kelvin wave breaks this does not significantly change
the adjustment scenario.

4.2. Kelvin-wave breaking

To study the process of Kelvin-wave breaking in more detail we performed numerical
simulations of the evolution of the pure nonlinear Kelvin wave, with vI = 0, the same
hI as in the previous simulation, but with uI obeying (A 16) exactly. This simulation
is presented in figure 4. The simulation shows the formation of a wake of short-scale
inertia–gravity waves behind the Kelvin front. This is a new phenomenon arising
beyond the limits of the asymptotic theory, as discussed above. The phenomenon
was qualitatively explained by Fedorov & Melville (2000), who were first to perform
high-resolution numerical simulations of Kelvin fronts. A necessary condition for such
an emission is that the phase speed of the nonlinear Kelvin wave (which is greater
than the phase speed of linear Kelvin waves due to nonlinearity) is large enough to
be equal to the inertia–gravity-wave phase velocity (cf. figure 1). The corresponding
wavelength for emitted inertia–gravity waves may be estimated from the intersection
of the (nonlinearly boosted) Kelvin-wave curve and upper curves for inertia–gravity
waves on figure 1. The parameters of inertia–gravity waves on figure 4 are consistent
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Figure 4. Evolution of a nonlinear Kelvin wave with δ = 0.3 and Ro = 0.5. The wave breaks
in finite time (∼ 10T ) forming a shock. inertia–gravity wave emission starts at this moment
behind the front and continues. The isolines h = 1.05, 1.2, 1.4 are shown.

with this estimate. Note that the phase speed of the emitted inertia–gravity waves is
roughly the same as the shock speed.

Since nonlinear Kelvin waves of the opposite sign are moving slower than linear
ones they should not emit inertia–gravity waves by direct resonance, which we confirm
in the corresponding simulation presented in figure 5. The parameters are the same
as in figure 4, except for the sign of the perturbation, which is opposite (depression).
A conclusion one can draw from the simulation of the Kelvin-wave breaking in
the context of adjustment and fast–slow motion interactions is that formation of
the Kelvin ‘fore-fronts’ does produce short-scale inertia–gravity waves (fast motion),
while formation of the ‘back-fronts’ does not. Kelvin fronts are zones of enhanced
dissipation and, thus, attenuate the initial disturbance by providing an energy sink
complementary to the dissipationless inertia–gravity-wave emission. The amplitude
of the jump in h varies along the Kelvin front. Therefore Kelvin fronts change the
potential vorticity distribution as they pass (cf. Appendix F). In this way secondary
jets are formed behind the Kelvin fronts as shown in figure 6. Thus, the Kelvin-wave
breaking does mean an onset of slow–fast motion interactions, as was seen in figure 4.
However, its main influence on the slow motion is due to dissipative effects.
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Figure 5. Evolution of a nonlinear Kelvin wave with δ = 0.3 and Ro = −0.5. The wave
breaks in finite time (∼ 10T ) forming a shock. There is no inertia–gravity wave emission.
Contours h = 0.6, 0.8, 0.95 are shown.

4.3. Nonlinear Rossby waves

We then tested the limits of the fast–slow splitting in the evolution of the Rossby-
wave part of the moderately nonlinear perturbation. As initial conditions we took
a Gaussian perturbation in the zonal direction with a meridional structure for all
fields corresponding to the Rossby wave with n = 1. The Rossby number was taken
to be 0.35 and the aspect ratio δ = 0.1, i.e. the parameters are well beyond the
asymptotic regime where the KdV equation (3.37) is formally valid. The evolution
of such a disturbance is presented in figure 7. Surprisingly, this essentially nonlinear
perturbation behaves according to the KdV pattern. Recall that within the framework
of the KdV equation any localized perturbation undergoes fission into a sequence
of solitons of diminishing amplitude (and, correspondingly, diminishing propagation
velocity). This is exactly what is observed in figure 7, although the observed modons are
strongly nonlinear (a clear criterion of strong nonlinearity is the transport of mass;
we call dipolar structures with recirculation mass-trapping zones inside ‘modons’,
otherwise those are ‘solitons’, although they are not necessarily solutions of the
KdV equation at high enough amplitudes). This means that, at least for perturbations
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Figure 6. (a) Potential vorticity deposit in the wake of a broken Kelvin wave at Ro = 0.6.

Isolines of h between 0.5 and 1.1 are shown. (b) The PV-anomaly q =
vx−uy+βy

H
− βy

H0
. The

isolines of q between −0.2 and 0.2 are shown. (c) the distribution of the u-field.

symmetric in y, the ‘breaking’ of Rossby waves consists of the formation of a sequence
of equatorial modons. Remarkably, each of the structures in the later panels of figure 7
is in the Ro ∼ δ2 regime, although δ is not very small for each of them. It is worth
noting that the height anomaly intensifies for the leading modon during this process.

In order to further test the interactions of the westward-propagating slow (Rossby)
part of the initial perturbation and inertia–gravity waves we followed the evolution of
a ‘soliton’ (cf. Boyd 1980a) with non-dimensional amplitude ∼0.3. A typical evolution
of the height field is presented in figure 8. A field of inertia–gravity waves of weak
intensity is seen in front of the soliton, while a (mostly Rossby-wave) wake is formed
behind. Although the modons or ‘solitons’ like the one presented on figure 8 are quite
stationary, the simulation suggests that they emit inertia–gravity waves, although
the precise origin of the observed IGW cannot be determined at this stage. Several
mechanisms may be at work, and to distinguish among them further investigation,
which is beyond the scope of the present paper, is necessary. As possible explanations
we would mention a direct resonance of the soliton with the west-moving inertia–
gravity waves (like in the Kelvin front case; however the time-evolution of the field
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Figure 7. Long-time evolution of a nonlinear dipolar perturbation with δ = 0.1, Ro = 0.35.
The initial perturbation forms a sequence of modons of diminishing amplitude and phase
speed. The isolines h = 1.1, 1.2, 1.3, 1.4 are shown. Note a build-up in amplitude for the
leading modon with respect to the initial perturbation.

presented in figure 8 suggests that it is the group velocity of the inertia–gravity-
wave packet which coincides with the speed of the Rossby solitons, while the phase
velocity of the inertia–gravity waves is higher), a non-local resonant triad interaction
of the type described by Ripa (1983), and a synchronization of IGW produced by
adjustment of the initial perturbation as they pass through the modon.

Note that we limited presentation of numerical simulations in this section to those
symmetric with respect to equator perturbations. That is, in these simulations we
excluded antisymmetric Yanai waves which have the lowest frequency of all fast
waves and asymptotics approaching those of (short) Rossby waves at large negative
wavenumbers. An exhaustive numerical investigation of equatorial adjustment in
strongly nonlinear regimes with special emphasis on wave breaking, which is
particularly significant for Yanai waves, will be presented elsewhere. Let us only
mention in this context that previous numerical simulations of eccentric pressure
perturbations by Fedorov & Melville (2000) confirm our theoretical predictions,
which is also the case for our simulations at low Rossby numbers (not presented).
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Figure 8. (a) Inertia–gravity waves and a Rossby-wave soliton with Ro ∼ 0.3. (a) The height
field with isolines h = 0.99, 1.01, 1.1, 1.2, 1.3 shown. (b) An equatorial section of the height
field. inertia–gravity waves in front of the (westward-propagating) soliton are clearly seen.
Behind the soliton there is a wake of weak Rossby waves

5. Summary and discussion
We have considered the evolution of localized zonally elongated perturbations on

the equatorial beta-plane in the framework of the rotating shallow-water model. An
inspection of the dispersion curve for linear equatorial waves shows a characteristic
spectral gap in the long-wave region between the slow Kelvin and Rossby waves,
and the fast Yanai and inertia–gravity waves. An asymptotic multiple-timescale
theory we constructed confirms that in the weakly nonlinear regime these slow and
fast components of motion are dynamically split, each obeying its own evolution
equation while propagating out from the initial disturbance. The absence of the
fast-motion drag upon the slow motion is proved by a direct analytic computation.
Possible weakly nonlinear regimes are classified with respect to the relation between
the Rossby number and the aspect ratio of the perturbation. In a specific regime
with Rossby number of the order of the square of the aspect ratio, the westward-
propagating Rossby-wave part of the spectrum obeys a KdV evolution equation for
its zonal evolution. The eastward-propagating Kelvin-wave part obeys the simple
wave equation and inevitably breaks, thus setting limits for the asymptotic theory.
To go beyond these limits a high-resolution shock-capturing code was applied
to simulate the evolution of essentially nonlinear perturbations numerically. The
numerical simulations showed that the breaking does introduce the generation of a
wake of inertia–gravity waves behind the Kelvin fore-front, although this wake stays
relatively close to the front and does not back-react, for rather long times. Kelvin
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back-fronts do not generate waves. Kelvin fronts are zones of localized dissipation
which modify the distribution of potential vorticity and produce secondary structures
in the wake of the front.

We find that essentially nonlinear dipolar perturbations evolve in a striking similar
way to the KdV solitons, although they are definitely outside the range of the
asymptotic theory which predicts KdV as the evolution equation. Therefore, we
deduce that breaking of symmetric (with respect to equator) nonlinear Rossby waves
consists of the formation of sequences of modons. Indications of inertia–gravity-wave
emission by modons are obtained.
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Appendix A. Linear equatorial waves – a reminder
A.1. Some useful formulae for the parabolic cylinder functions φn

φ′′
n + (2n + 1 − y2)φn = 0, (A 1)

φn(y) =
Hn(y) exp (−y2/2)√

2nn!
√

π
, (A 2)

where Hn are Hermite polynomials:

H ′
n(y) = 2nHn−1(y), n = 1, 2, . . . , (A 3)

Hn+1(y) − 2yHn + 2nHn−1(y) = 0, n = 1, 2, . . . , (A 4)

φ′
n =

exp (−y2/2)√
2nn!

√
π

(
nHn−1 − 1

2
Hn+1

)
, (A 5)

yφn =
exp (−y2/2)√

2nn!
√

π

(
nHn−1 + 1

2
Hn+1

)
, (A 6)

φ′
n + yφn =

√
2nφn−1, (A 7)

φ′
n − yφn =

√
2(n + 1)φn+1. (A 8)

A.2. Kelvin wave

The non-dimensional linear RSW equations are

ut − yv + hx = 0, (A 9)

vt + yu + hy = 0, (A 10)

ht + ux + vy = 0. (A 11)

By the change of variables (Gill 1980)

f = 1
2
(u + h), g = 1

2
(u − h) (A 12)

equations (A 9)–(A 11) simplify. They admit a particular solution with v = 0 and

f = F (x − t, y), g = G(x + t, y). (A 13)
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For meridionally bounded solutions G = 0 and the Kelvin-wave solution is given by

u = F0(x − t) exp (−y2/2), h = F0(x − t) exp (−y2/2), v = 0. (A 14)

The function F0 is determined by expanding the initial condition fI = 1
2
(uI + hI ) in

a series in parabolic cylinder functions, fI =
∑∞

n=0 fIn
φn(y). Hence, the function F0 is

given by

F0(x) = fI0
(x) =

1

2

∫ +∞

−∞
(uI + hI )φ0(y) dy (A 15)

and the initial conditions for the Kelvin wave are

u
(K)
I = fI0

φ0, h
(K)
I = fI0

φ0, v
(K)
I = 0. (A 16)

A.3. Yanai wave

The Yanai-wave solution corresponds to g = 0, f 	= 0, v 	= 0. In this case from
(A 9–A 11) it follows that

v = v0(x, t)φ0(y) (A 17)

and by expanding the function f in a series in φn we obtain

f = F1(x, t)φ1(y). (A 18)

Hence

F1t
+ F1x

− 1√
2
v0 = 0, v0t

+
√

2F1 = 0. (A 19)

The initial conditions for the Yanai wave are

u
(Y )
I = 1

2
(uI1

+ hI1
)φ1, h

(Y )
I = 1

2
(uI1

+ hI1
)φ1, v

(Y )
I = vI0

φ0. (A 20)

where, as above, we suppose that initial conditions are expanded in φn. In terms of
the variable v the Yanai wave is a solution of the following problem, cf. (A 17)–(A 19),
(A 20):

v
(Y )
t t + v

(Y )
xt + v(Y ) = 0, v

(Y )
I = vI0

φ0, v
(Y )
t

∣∣
t=0

= − 1√
2
(uI1

+ hI1
)φ0. (A 21)

The solution has the form (A 17) with v0 given by

v0 =

∫
dk

|σ2|ṽI0
− i

√
2f̃ I1√

k2 + 4
ei(kx−σ1t) +

∫
dk

σ1ṽI0
+ i

√
2f̃ I1√

k2 + 4
ei(kx+|σ2|t), (A 22)

where

σ1 =
k

2
+

√
k2

4
+ 1, |σ2| = −k

2
+

√
k2

4
+ 1 (A 23)

and we defined the Fourier-transforms of the initial fields:

vI0
(x) =

∫
dkṽI0

(k) eikx, 1
2
(uI1

+ hI1
) =

∫
dkf̃ I1

(k) eikx. (A 24)

A.4. Rossby and inertia–gravity waves

The use of the full equation for the v-field which follows from (A 9)–(A 11) by
eliminating u and h is necessary for determining this part of the spectrum:

∂t

(
�v − y2v − ∂ttv

)
+ ∂xv = 0. (A 25)
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The three initial conditions are

v|t=0 = v
(RG)
I ,

vt |t=0 = −
(
yu

(RG)
I + h

(RG)
Iy

)
,

vtt |t=0 = v
(RG)
Iyy

− y2v
(RG)
I + ∂x

(
u

(RG)
Iy

+ yh
(RG)
I

)
,


 (A 26)

where

u
(RG)
I = uI − u

(K)
I − u

(Y )
I = 1

2
(uI0

− hI0
)φ0 + 1

2
(uI1

− hI1
)φ1 +

∞∑
n=2

uIn
(x)φn(y) (A 27)

h
(RG)
I = hI − h

(K)
I − h

(Y )
I = − 1

2
(uI0

− hI0
)φ0 − 1

2
(uI1

− hI1
)φ1 +

∞∑
n=2

hIn
(x)φn(y), (A 28)

v
(RG)
I = vI − v

(Y )
I =

∞∑
n=1

vIn
(x)φn(y). (A 29)

By expanding v in a series in φn, v =
∑

n vn(x, t)φn(y), we obtain for vn

∂t

[
∂2

xxvn − (2n + 1)vn − ∂2
t t vn

]
+ ∂xvn = 0, (A 30)

while for its Fourier-transform ṽn(k, t) =
∫

dx e−ikxvn(x, t) we obtain

∂3
t t t ṽn + (k2 + 2n + 1)∂t ṽn − ikṽn = 0. (A 31)

Hence

ṽn = vn1
(k) e−iσn1

t + vn2
(k) e−iσn2

t + vn3
(k) e−iσn3

t (A 32)

where σnα
, α = 1, 2, 3, are the three roots of the dispersion equation

σ 3
nα

− (k2 + 2n + 1)σnα
− k = 0. (A 33)

By introducing the projections vIn
, vtIn

, vttIn
of the initial conditions vI , vtI , vttI ,

respectively, onto the corresponding φn, and their Fourier-transforms, we obtain
the following system of algebraic equations for vn(α):

3∑
α=1

vnα
= ṽnI

,

3∑
α=1

σnα
vnα

= iṽtnI
,

3∑
α=1

σ 2
nα

vnα
= −ṽttnI

. (A 34)

The lowest eigenvalue σ1 defines the Rossby mode, the other two the inertia–gravity
wave modes. For the Rossby mode we obtain

v
(1)
1 =

1

2σ 3
n1

(
kṽnI

+ iσ 2
n1

ṽtnI
− σn1

ṽttnI

)
. (A 35)

Therefore, the part of the initial conditions corresponding to this wave may be
determined, and similarly for the gravity-wave modes.

Appendix B. Long Kelvin waves in the presence of the mean zonal flow
In the absence of the zonal flow the non-dispersive Kelvin waves always overturn

due to advective nonlinearity. If the balanced mean flow u(M)(y), h(M)(y) with

yu(M)(y) + h(M)(y) = 0 (B 1)
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is present, it may prevent breaking of Kelvin waves. In the presence of the mean flow
equations (2.10)–(2.11) take the form

ut1 + ε1

(
u(M)ux + vu(M)

y

)
+ ε(uux + vuy) − yv = −hx, (B 2)

δ2vt1 + δ2ε1u
(M)vx + δ2ε(uvx + εvvy) + yu = −hy, (B 3)

ht1 + vy + ux + ε1

[(
h(M)v

)
y
+

(
h(M)u + hu(M)

)
x

]
+ ε

[
(hv)y + (hu)x

]
= 0. (B 4)

Here the Rossby numbers ε1 and ε are related to the mean flow and Kelvin waves,
respectively. Both ε1 and ε are assumed small. We would like to find a relation
between ε1 and ε allowing the breaking of Kelvin waves to be prevented.

At the lowest order in Rossby numbers we have (2.13)–(2.15) and for the Kelvin
waves

v(0) = 0 ⇒ u(0) = h(0) = U0 (x − t1, t2) φ0(y). (B 5)

The next terms of the perturbation theory are of order max(ε, ε1) and we find

u
(1)
t1 − yv(1) + h(1)

x = −u
(0)
t2 − ε1

max(ε, ε1)
u(M)u(0)

x − ε

max(ε, ε1)
u(0)u(0)

x , (B 6)

yu(1) + h(1)
y = 0, (B 7)

h
(1)
t1 + u(1)

x + v(1)
y = −h

(0)
t2 − ε

max(ε, ε1)

(
h(0)u(0)

)
x
+

ε1

max(ε, ε1)

(
h(0)u(M) + u(0)h(M)

)
x
.

(B 8)

Introducing the notation R(1)
u , R

(1)
h for the right-hand side of (B 6) and (B 8),

respectively, we obtain after simple manipulations a single equation for v(1) from
(B 6)–(B 8):(

v(1)
yy − y2v(1)

)
t1

+ v(1)
x = −

[(
R(1)

u + R
(1)
h

)
y
+ y

(
R(1)

u + R
(1)
h

)]
= R(1)

v . (B 9)

The forcing on the right-hand side of (B 9) is defined from the zero-order Kelvin-wave
solution (B 5) and has the form R(1)

v = R(1)
v (x − t1, y). Therefore, the forced solution

of (B 9) is

v(1) = v(1)(x − t1, y). (B 10)

From (B 6), (B 8) we obtain(
u(1) + h(1)

)
t1

+
(
u(1) + h(1)

)
x
+ v(1)

y − yv(1) = R(1)
u + R

(1)
h . (B 11)

The resonant terms are absent in (B 11) if

v(1)
y − yv(1) = R(1)

u + R
(1)
h . (B 12)

Equation (B 12) has a solution bounded in y if∫ +∞

−∞

(
R(1)

u + R
(1)
h

)
φ0(y) dy = 0 (B 13)

which defines the slow-time evolution of Kelvin waves. A simple analysis shows that
when the mean flow is weak, ε � ε1, the slow evolution is given by the simple wave
equation. Breaking takes place at finite time, and the phase velocity of the wave
acquires a correction to the phase speed due to the mean flow. Dispersion does
not occur in this regime. Hence, in order to prevent breaking we need ε � ε1. In
order to determine the precise relation between ε and ε1 that stops the nonlinear
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breaking of the Kelvin wave by dispersion, it is worth noting that dispersion in the
system is entirely due to the term δ2vt1 in (B 3) and that the evolution takes place
on the timescale t2, the next slow time with respect to t1. Under condition ε � ε1

this timescale is t2 = ε1t1 independently of the value of δ (the correction to the
phase-speed due to the mean flow appears precisely at this timescale). As the order
of magnitude of vt2 is O(ε2

1 ) (because of v(1) ∼ ε1), the dispersive term δ2vt2 ∼ δ2ε2
1

and the nonlinearity have to appear at the same order. Therefore, we arrive to the
conclusion that a mean flow may prevent Kelvin wave breaking only if

δ2ε2
1 ∼ ε, (B 14)

i.e. for a rather small amplitude of the Kelvin wave. If the mean flow and the wave
have the same amplitude, ε ∼ ε1, as in the main body of the paper, Kelvin waves
break.

Appendix C. Details of calculations for Ro = O(δ2) adjustment
C.1. δ0-approximation

As follows from (3.9), (3.10), (3.15), and (3.16)

v̄(0) = 0, (C 1)

yū(0) + h̄(0)
y = 0. (C 2)

Equation (3.27) for the fast fields is written as

ṽ
(0)
t t − ṽ(0)

yy + y2ṽ(0) = 0. (C 3)

Its solution has the form

ṽ(0) =

∞∑
n=0

ṽ(0)
n (x, t)φn(y), (C 4)

where

ṽ(0)
n = A+

0n
(x, t1, t2, . . .)e

iσnt + A−
0n

(x, t1, t2, . . .)e
−iσnt , σn =

√
2n + 1. (C 5)

The initial conditions for all fields are uniquely defined – see Appendix D. Thus, we
have a yet undefined geostrophically balanced slow field (C 1), (C 2) and a spectrum
of fast Yanai (n = 0) and inertia–gravity waves (n > 0).

It is convenient to introduce the primitive of the fast meridional velocity with zero
mean:

Ṽ0 =

∫
dt ṽ(0) = −

∞∑
n=0

ṽ(0)
nt

(x, t)

σ 2
n

φn(y), Ṽ 0 = 0. (C 6)

Correspondingly, from (3.19), (3.21):

ũ(0) = yṼ0 = −y

∞∑
n=0

ṽ(0)
nt

(x, t)

σ 2
n

φn(y), h̃(0) = −Ṽ0y
=

∞∑
n=0

ṽ(0)
nt

(x, t)

σ 2
n

φny
(y). (C 7)

C.2. δ1-approximation

C.2.1. Slow component

By virtue of (3.22) for n = 1, (3.11), and (C 1) we have the following equation for
v̄(1): (

v̄(1)
yy − y2v̄(1)

)
t1

+ v̄(1)
x = 0, (C 8)
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with a solution

v̄(1) =

∞∑
n=0

v̄(1)
n (x + c̄nt1)φn(y). (C 9)

The first term of the expansion, v̄
(1)
0 (x + t1)φ0(y), is of Yanai-wave form. We show

in Appendix D that v̄
(1)
0 = 0. Once v̄(1) is known, ū(0) and h̄(0) may be found. By

introducing (cf. (A 12)) the functions

f̄ (0) = ū(0) + h̄(0), ḡ(0) = ū(0) − h̄(0) (C 10)

we obtain from (3.15) and (3.17) for n = 1

f̄
(0)
t1 + f̄ (0)

x = yv̄(1) − v̄
(1)
1y

, ḡ
(0)
t1 − ḡ(0)

x = v̄(1)
y + yv̄(1). (C 11)

The full solution of these equations is

f̄ (0) = F0(x − t1, y) + F̄0, ḡ(0) = G0(x + t1, y) + Ḡ0, (C 12)

where F0, G0 are yet undetermined solutions of the corresponding homogeneous
equations and F̄0, Ḡ0 are the forced solutions of the form

F̄0 =

∞∑
n=1

√
2(n + 1)

1 + c̄n

V̄1n
(x + c̄nt1) φn+1(y), (C 13)

Ḡ0 =

∞∑
n=1

√
2n

1 − c̄n

V̄1n
(x + c̄nt1) φn−1(y). (C 14)

When deriving these expressions, we substituted (C 9) into (C 11) and used (A 7),
(A 8). The functions V̄1n

are the primitives of v̄(1)
n with respect to x: V̄1nx

= v̄(1)
n , and

may be determined from the initial conditions, cf. (D 21) in Appendix D:

V̄1n
(x) =

(
ū

(0)
In+1

(x) + h̄
(0)
In+1

(x)
) √

2(n + 1)

2n + 1
. (C 15)

The functions F0, G0, too, may be determined from initial conditions (cf. Appendix D).
In terms of initial variables we obtain

ū(0)(x, y, t1) = U0(x − t1)φ0(y) + 1
2
(F̄0 + Ḡ0), (C 16)

h̄(0)(x, y, t1) = U0(x − t1)φ0(y) + 1
2
(F̄0 − Ḡ0), (C 17)

with

U0(x) = ū
(0)
I0

(x) + h̄
(0)
I0

(x). (C 18)

The full slow solution (ū(0), v̄(1), h̄(0)) is a sum of three contributions (3.32), (3.33)–
(3.35), and (3.36). All of them are unambiguously defined.

C.2.2. Fast component

By virtue of (3.11) and (3.27) for n = 1 we have for ṽ(1)

ṽ
(1)
t t + y2ṽ(1) − ṽ(1)

yy = −2ṽ
(0)
t t1 + Ṽ0x

. (C 19)

The right-hand side of (C 19) is resonant and, hence, should vanish:

−2ṽ
(0)
t t1 + Ṽ0x

= 0 ⇒ −2ṽ
(0)
t t t1 + ṽ(0)

x = 0. (C 20)
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Expanding this expression in φn(y) we find the equation

A
±
0n

(x, t1) = A
±
0n

(
x − t1

2σ 2
n

)
(C 21)

which determines the slow-time evolution of the zero-order fast fields. For the first-
order fast fields, due to (C 20) equation (C 19) becomes homogeneous and is solved
by ṽ(1) =

∑∞
n=0 ṽ(1)

n (x, t, t1, . . .)φn(y) with

ṽ(1)
n = A+

1n
(x, t1, . . .)e

iσnt + A−
1n

(x, t1, . . .)e
−iσnt . (C 22)

ũ(1) and h̃(1) are determined from (3.19), (3.21) for n = 1, and (C 7):

ũ(1) = yṼ1 + W̃0xy
− yW̃0t1

, (C 23)

h̃(1) = −Ṽ1y
+ W̃0xt1

− yW̃0x
, (C 24)

where Ṽ1 =
∫

dt ṽ(1) and W̃0 =
∫

dt Ṽ0, respectively:

Ṽ1(x, y, t) = −
∞∑

n=0

1

σ 2
n

ṽ(1)
nt

(x, t, t1)φn(y), W̃0 = −
∞∑

n=0

1

σ 2
n

ṽ(0)
n (x, t, t1)φn(y). (C 25)

C.3. δ2- approximation

C.3.1. Slow motion

Using (3.11) and (3.12) we obtain from (3.22) for n = 2(
v̄(2)

yy − y2v̄(2)
)

t1
+ v̄(2)

x =
(
yP̄ (2)

u + P̄
(2)
hy

)
t1

−
(
P̄ (2)

uy
+ yP̄

(2)
h

)
x
, (C 26)

where

P̄ (2)
u = −ū

(0)
t2 − ṽ(0)ũ

(0)
y , (C 27)

P̄
(2)
h = −h̄

(0)
t2 − (h̃(0)ṽ(0))y. (C 28)

Let us calculate the time-averages entering these equations. Due to (C 5)

ṽ
(0)
n ṽ

(0)
mt

= ṽ
(0)
n ṽ

(0)
m = 0, m 	= n, (C 29)

and, hence, from (C 4), (C 7) we find

ṽ(0)ũ
(0)
y = −

∞∑
n=0

ṽ
(0)
n ṽ

(0)
nt

σ 2
n

φn(y)(yφn(y))y = 0, (C 30)

h̃(0)ṽ(0) = −
∞∑

n=0

ṽ
(0)
n ṽ

(0)
nt

σ 2
n

φn(y)φn(y)y = 0. (C 31)

Using (C 2) one may show that the right-hand side of (C 26) is equal to (ū(0)
y +

yh̄(0))xt2 . By differentiating (C 26) in t1 and using (D 15) we arrive to the following
inhomogeneous linear PDE:

L̂v̄
(2)
t1 = v̄

(1)
xt2 (C 32)

where the operator L̂ is defined as

L̂ =
(
∂2

yy − y2
)
∂t1 + ∂x. (C 33)

The necessary condition for the absence of resonances in (C 32) is v̄
(1)
t2 = 0, which

means that v̄(1) and, hence ū(0) and h̄(0) as well, do not depend on t2, i.e. the
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Rossby-wave part is t2-independent. Therefore, only the Kelvin-wave part occurs in
the right-hand side of (3.15), (3.17) for n = 1. By adding these two equations we
obtain (

ū(1) + h̄(1)
)

t1
+

(
ū(1) + h̄(1)

)
x

= −
(
ū

(0)
(K) + h̄

(0)
(K)

)
t2

−
(
v̄(2)

y − yv̄(2)
)
, (C 34)

whence it follows that the Kelvin-wave part does not depend on t2 either, because v̄(2)

which satisfies the homogeneous equation (C 32) does not contain terms depending
on x − t1. Hence, the second-order slow-component equations (3.15)–(3.17) are
homogeneous and are analysed in the same way as in the case n = 1.

C.3.2. Fast motion

Using (3.12), (3.19)–(3.21) for n = 0, 1, equation (3.27) for ṽ(2) takes the form

ṽ
(2)
t t + y2ṽ(2) − ṽ(2)

yy = −2ṽ
(1)
t t1 + Ṽ1x

− 2ṽ
(0)
t t2 − ṽ

(0)
t1t1 + ṽ(0)

xx

− W̃0xt1 + yū(0)
y ṽ(0) +

(
h̄(0)ṽ(0)

)
yy

+ RNL, (C 35)

where the nonlinear part

RNL = yṽ(0)ũ(0)
y +

(
h̃(0)ṽ(0)

)
yy

−
(
ṽ(0)ṽ(0)

y

)
t

(C 36)

does not contain any resonances. The linear part does, and hence

−2ṽ
(1)
t t1 + Ṽ1x

− 2ṽ
(0)
t t2 − ṽ

(0)
t1t1 + ṽ(0)

xx − W̃0xt1 +
[
yū(0)

y ṽ(0) +
(
h̄(0)ṽ(0)

)
yy

]
res

= 0, (C 37)

where the index res means resonant part.
The next step consists of considering (C 37) as an equation for ṽ(1) and eliminating

resonances at the next timescale t1. Among the terms not containing ṽ(0), the first
four are always resonant, while the last is resonant only if the mean flow ū

(0)
(M), h̄

(0)
(M) is

present. Let us calculate the term [. . .]res in (C 37). The expansion of the expression
inside the square brackets in φn gives

yū(0)
y ṽ(0) +

(
h̄(0)ṽ(0)

)
yy

=
∑
n,m

ṽ(0)
m Φmnφn, (C 38)

where

Φmn =

∫ +∞

−∞
dy

[
h̄(0)(y2 − 2n − 1) + yū(0)

y

]
φmφn. (C 39)

It is easy to see that the resonant part of (C 38) is[
yū(0)

y ṽ(0) +
(
h̄(0)ṽ(0)

)
yy

]
res

=
∑

n

ṽ(0)
n Φnnφn. (C 40)

Decomposing the slow fields into mean-flow, Kelvin-wave and Rossby-wave
contributions:

h̄(0) = h̄
(0)
(M)(y) + U0(x − t1)φ0(y) + h̄

(0)
(R), (C 41)

ū(0) = ū
(0)
(M)(y) + U0(x − t1)φ0(y) + ū

(0)
(R), (C 42)



Nonlinear geostrophic adjustment of long-wave disturbances 161

we obtain Φnn = Φ (M)
nn + Φ (K)

nn + Φ (R)
nn , where

Φ (M)
nn =

∫ +∞

−∞
dy

[
h̄

(0)
(M)(y

2 − 2n − 1) + yū
(0)
(M)

]
φ2

n, (C 43)

Φ (K)
nn = U0(x − t1)

∫ +∞

−∞
dy [φ0(y

2 − 2n − 1) + yφ0y
]φ2

n, (C 44)

Φ (R)
nn =

1

2

∞∑
m=1

V̄1m
(x + c̄mt1)

∫ +∞

−∞
dy [P −

m (y2 − 2n − 1) + yP +
my

]φ2
n. (C 45)

In the last expression the following notation is introduced:

P ±
m =

√
2(m + 1)

1 + c̄m

φm+1 ±
√

2m

1 − c̄m

φm−1. (C 46)

The only resonant contribution in time t1 comes from the mean-flow part, and hence
the modulation of the zeroth-order fast meridional velocity field ṽ(0) in time t2 is given
by the following equation:

2ṽ
(0)
t t2 + ṽ

(0)
t1t1 − ṽ(0)

xx + W̃0xt1 −
∑

n

ṽ(0)
n Φ (M)

nn φn = 0. (C 47)

Correspondingly, the slow evolution of the first correction ṽ(1) in t1 is given by

2Ṽ1t t t1
− Ṽ1x

=
∑

n

ṽ(0)
n (Φ (K)

nn + Φ (R)
nn )φn. (C 48)

Substituting (C 4) into (C 47) and taking into account (C 21) we obtain the modulation
equation (3.30) for the zero-order wave amplitudes. Substitution of (C 25) and (C 4)
into (C 48) gives the equation (3.31) for the first correction to the amplitude.

C.4. δ3- approximation

We will limit consideration to the slow motions which are described by

ū
(2)
t1 − yv̄(3) + h̄(2)

x = P̄ (3)
u , (C 49)

yū(2) + h̄(2)
y = P̄ (2)

v , (C 50)

h̄
(2)
t1 + ū(2)

x + v̄(3)
y = P̄

(3)
h , (C 51)

with

P̄ (3)
u = −

(
ū

(0)
t3 + ū

(1)
t2 + ū(0)ū(0)

x + v̄(1)ū(0)
y + ṽ(0)ũ

(1)
y + ṽ(1)ũ

(0)
y + ũ(0)ũ

(0)
x

)
, (C 52)

P̄ (2)
v = −

(
v̄

(1)
t1 + ṽ(0)ṽ

(0)
y

)
, (C 53)

P̄
(3)
h = −

(
h̄

(0)
t3 + h̄

(1)
t2 +

(
h̄(0)ū(0)

)
x
+

(
h̄(0)v̄(1)

)
y
+

(
h̃(1)ṽ(0) + h̃(0)ṽ(1)

)
y
+

(
h̃(0)ũ(0)

)
x

)
.

(C 54)

From (C49) and (C 51) we obtain an equation for v̄(3) (see the definition of L̂ in
(C 33)):

L̂v̄(3) =

(
∂2

∂x2
− ∂2

∂t2
1

)(
yū(2) + h̄(2)

y

)
+

(
yP̄ (3)

u + P̄
(3)
hy

)
t1

−
(
P̄ (3)

uy
+ yP̄

(3)
h

)
x
, (C 55)

which, taking into account (C 50), (C 53) may be rewritten in the form

L̂v̄(3) = −
(

∂2

∂x2
− ∂2

∂t2
1

)(
v̄

(1)
t1 + ṽ(0)ṽ

(0)
y

)
+

(
yP̄ (3)

u + P̄
(3)
hy

)
t1

−
(
P̄ (3)

uy
+ yP̄

(3)
h

)
x

(C 56)
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Analysis of possible resonances on the right-hand side of (C 56) shows that those
due to the stresses of the fast fields are absent (cf. Appendix E). This result is non-
trivial because, as follows from (3.31), the variable ṽ(1) does depend parametrically
on the slow Rossby waves via the factor Φ (K)

nn + Φ (R)
nn . However, this dependence

surprisingly drops out from the averages determining the right-hand side of (C 55).
Correspondingly, to study the resonant terms in (C 55) it is sufficient to use the
truncated expression for the right-hand side:

−
(

∂2

∂x2
− ∂2

∂t2
1

)
v̄

(1)
t1 +

(
yP̄ (3)

u + P̄
(3)
hy

)
t1

−
(
P̄ (3)

uy
+ yP̄

(3)
h

)
x
, (C 57)

where now

P̄ (3)
u = −

(
ū

(0)
t3 + ū

(1)
t2 + ū(0)ū(0)

x + v̄(1)ū(0)
y

)
, (C 58)

P̄
(3)
h = −

(
h̄

(0)
t3 + h̄

(1)
t2 +

(
h̄(0)ū(0)

)
x
+

(
v̄(1)h̄(0)

)
y

)
. (C 59)

Expression (C 57) may be written in a more compact form by using the primitives of
the variables v̄(1), v̄(2) with respect to the first slow time t1:

V̄1t1
= v̄(1), V̄2t1

= v̄(2). (C 60)

From (D 15) and (3.15), (3.17), (3.18) for n = 2, respectively, we have

ū(0)
y + yh̄(0) = V̄1, (C 61)

ū(1)
y + yh̄(1) = V̄2. (C 62)

Using (C 2), (3.18) for n = 2, (D 15) and the fact that v̄(1) does not depend on t2 and,
hence, ū(0), h̄(0) do not depend on t2 either, we obtain the following expression for
(C 57):(

∂2

∂x2
− ∂2

∂t2
1

)
v̄

(1)
t1 + V̄1xt3

+ V̄2xt2
+

(
ū(0)ū(0)

x + v̄(1)ū(0)
y

)
xy

− y
(
ū(0)ū(0)

x + v̄(1)ū(0)
y

)
t1

+ y
((

h̄(0)ū(0)
)

x
+

(
v̄(1)h̄(0)

)
y

)
x

−
((

h̄(0)ū(0)
)

x
+

(
v̄(1)h̄(0)

)
y

)
yt1

, (C 63)

Elimination of resonances in (C 56), thus, results in the following equation:(
∂2

∂x2
− ∂2

∂t2
1

)
v̄

(1)
t1 + V̄1xt3

+ V̄2xt2
+

[(
ū(0)ū(0)

x + v̄(1)ū(0)
y

)
xy

− y
(
ū(0)ū(0)

x + v̄(1)ū(0)
y

)
t1

+ y
((

h̄(0)ū(0)
)

x
+

(
v̄(1)h̄(0)

)
y

)
x

−
((

h̄(0)ū(0)
)

x
+

(
v̄(1)h̄(0)

)
y

)
yt1

]
res

=0. (C 64)

Here, the first, second and fourth terms do not depend on t2, and to provide
boundedness of the solution in t2 one has to set V̄2xt2

= 0. From (C 60), (C 9) we
obtain

V̄1 =

∫
dt1v̄

(1) =
∑

n

φn

∫
dt1v̄

(1)
n =

∑
n

φn

c̄n

∫
dξ v̄(1)

n (ξ ) =
∑

n

φn

c̄n

V̄1n
(C 65)

and with the help of (C 9) we express the linear part of (C 64) as(
∂2

∂x2
− ∂2

∂t2
1

)
v̄

(1)
t1 + V̄1xt3

=
∑

n

φn

c̄n

(
V1nt3

+
(
c̄4
n − c̄2

n

)
V̄1nxxx

)
x
. (C 66)

When analysing the resonances produced by nonlinear terms, it is important to bear
in mind that only the product of a given zonal mode with itself may give rise to
resonances. For example, although the long Rossby waves do mutually interact, the
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products of the form R1(x + c̄1t) R2(x + c̄2t) are not resonant for c̄1 	= c̄2 and localized
R1, R2. Calculation of the resonant contributions corresponding to the nth meridional
mode gives

[. . .]res = −
(
V̄1n

V̄1nx

)
x
φn(y)

(
1 − c̄2

n

) ∫
dy

1

2

[
− P −

n

4

(
(P −

n )2 + 2φnP
−
ny

)
+ c̄n

P +
n

4
((P +

n )2 + (P −
n )2)

]
. (C 67)

Therefore, the condition of absence of resonances results in the KdV equation (3.37)
with the coefficients given by

αn = c̄4
n − c̄2

n, (C 68)

βn = −c̄n

(
1 − c̄2

n

) ∫
dy

1

2

[
− P −

n

4

(
(P −

n )2 + 2φnP
−
ny

)
+ c̄n

P +
n

4

(
(P +

n )2 + (P −
n )2

)]
, (C 69)

and P ±
n were defined in (C 46). Note that βn vanishes for even n, and hence the even

modes just disperse at this order. In the case of special initial conditions consisting
exclusively of even meridional modes, the mKdV equation may be obtained along the
same lines by changing the scaling appropriately.

Let us now define the slow evolution of the Kelvin waves. Using (C 52), (C 53) the
condition (3.25) gives at this order

U0t3
+ U1t2

+ 3
2
γU0U0x

= 0, γ =

∫ +∞

−∞
dy φ3

0 . (C 70)

Here U1 = U1(x − t1, t2, . . .) corresponds to the first-order correction to the Kelvin-
wave field. As U0 does not depend on t2 (cf. (C 34) and the comment after it), the
same is true for U1 and we arrive at the Riemann-wave equation (3.38).

Appendix D. Initialization procedure for Ro = O(δ2) adjustment.
D.1. The zeroth order

The initial conditions for ṽ(0) are (cf. (C 1) and (3.6) for n = 0)

ṽ(0)
∣∣
t=0

= vI , ṽ
(0)
t

∣∣
t=0

= −
(
yuI + hIy

)
. (D 1)

From (C 3) we then obtain

ṽ(0)
ntt

+ (2n + 1)ṽ(0)
n = 0, (D 2)

ṽ(0)
n

∣∣
t=0

= vIn
, (D 3)

ṽ(0)
nt

∣∣
t=0

= −
(
yuIn

+ hIyn

)
, (D 4)

Hence, we obtain (C 5) with

A
±
0n

∣∣
t=0

=
1

2

(
vIn

∓ i
yuIn

+ hIyn

σn

)
. (D 5)

To determine the initial conditions for h̃(0), ũ(0) we integrate (3.19), (3.21) for n = 0
in time:

ũ(0) = ũ
(0)
I + yV0, h̃(0) = h̃

(0)
I − V0. (D 6)



164 J. Le Sommer, G. M. Reznik and V. Zeitlin

Here V0 =
∫ t

0
dt ṽ(0). By definition, the time-average of the fast fields ũ(0), h̃(0) vanishes,

hence

ũ
(0)
I = −yV̄0, h̃

(0)
I = V̄0y. (D 7)

The function V̄0 is uniquely defined from the equation

V̄0yy − y2V̄0 = yuI + hIy
, (D 8)

which readily follows from (C 3) and (D1). From (D 7), (D 8) it follows that

yũ
(0)
I + h̃

(0)
Iy

= yuI + hI y. (D 9)

Given V̄0 the initial conditions for the fast fields ũ
(0)
I and h̃

(0)
I follow from (D 7), (D 8)

and, in turn, give the initial conditions for the slow fields:

ū
(0)
I = uI − ũ

(0)
I , h̄

(0)
I = hI − h̃

(0)
I . (D 10)

It is easy to check that the initial conditions (D 10) do not contradict the geostrophic
balance (C 2) because of (D 9)).

D.2. The first order

The slow-motion equations are

ū
(0)
t1 − yv̄(1) + h̄(0)

x = 0, (D 11)

yū(0) + h̄(0)
y = 0, (D 12)

h̄
(0)
t1 + ū(0)

x + v̄(1)
y = 0. (D 13)

From (D 11)–(D 13)

v̄(1)
yy − y2v̄(1) +

(
ū(0)

y + yh̄(0)
)

x
= 0 (D 14)(

ū(0)
y + yh̄(0)

)
t1

= v̄(1). (D 15)

The initial condition for v̄(1) is obtained from (D14), (D 15), and (D10):

v̄
(1)
Iyy

− y2v̄
(1)
I = −

(
ū

(0)
Iy

+ yh̄
(0)
I

)
x
. (D 16)

Once v̄
(1)
I is found from (D16), the initial conditions for ṽ(1) to be used in (C 19) are

known. The first is

ṽ
(1)
I = −v̄

(1)
I . (D 17)

The second initial condition follows from (3.6) for n = 1:

ṽ
(1)
t

∣∣
t=0

= −ṽ
(0)
t1

∣∣
t=0

. (D 18)

To demonstrate that a Yanai wave does not contribute to the slow solution at this
order we write (D 16) in the following form:

v̄
(1)
Iyy

− y2v̄
(1)
I = −

((
h̄

(0)
I − ū

(0)
I

)
y

− y
(
h̄

(0)
I − ū

(0)
I

))
x
. (D 19)

The right-hand side of this equation may be rewritten as (cf. (A 7), (A 8))

∞∑
n=0

(
h̄

(0)
In

− ū
(0)
In

)
x
(φny

(y) − yφn(y)) = −
∞∑

n=0

(
h̄

(0)
In

− ū
(0)
In

)
x

√
2(n + 1)φn+1(y). (D 20)

Thus, there is no term with φ0 on the right-hand side of (D 19) and v̄
(1)
0 (x + t1)

vanishes, i.e. the Yanai wave is absent in (C 9). This is, in fact, a consistency check,
as the Yanai wave is fast and should be contained in the solution of (C 19).
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From (D 11) and (D 16) we obtain for v̄
(1)
In

:

v̄
(1)
In

=
(
ū

(0)
In+1

+ h̄
(0)
In+1

)
x

√
2(n + 1)

2n + 1
. (D 21)

In order to determine F0(x − t1, y) and G0(x + t1, y) in (C 12) we calculate F̄0I
, Ḡ0I

using (C 15) and the fact that ū
(0)
I1

+ h̄
(0)
I1

= 0 following from (C 2):

F̄0I
(x, y) = ū

(0)
I (x, y) + h̄

(0)
I (x, y) −

(
ū

(0)
I0

(x) + h̄
(0)
I0

(x)
)
φ0(y), (D 22)

Ḡ0I
(x, y) = ū

(0)
I (x, y) − h̄

(0)
I (x, y). (D 23)

From (C 12), (D 22), (D 23) we obtain

f̄
(0)
I = ū

(0)
I (x, y) + h̄

(0)
I (x, y) −

(
ū

(0)
I0

(x) + h̄
(0)
I0

(x)
)
φ0(y) + F0(x, y), (D 24)

ḡ
(0)
I = ū

(0)
I (x, y) − h̄

(0)
I (x, y) + G0(x, y), (D 25)

whence using (C 10)

F0(x, y) =
(
ū

(0)
I0

(x) + h̄
(0)
I0

(x)
)
φ0(y), (D 26)

G0 = 0. (D 27)

D.3. The second order

The initial field v̄
(2)
I is found as solution of equation (3.23) for n = 2:

v̄
(2)
Iyy

− y2v̄
(2)
I = −

(
ū

(1)
Iy

+ yh̄
(1)
I

)
x
, (D 28)

where ū
(1)
I = −ũ

(1)
I , h̄

(1)
I = −h̃

(1)
I , and ũ(1), h̃(1) are known from the previous approxi-

mation.

Appendix E. Analysis of the fast–fast–slow resonances at the third order in δ

The importance of this Appendix is that it gives a proof of equatorial slow–fast
splitting by a direct calculation of the nonlinear terms on the right-hand side of
(C 56). Due to (C 4), (C 29), (C 5), and (C 21) we have

ṽ(0)ṽ
(0)
y =

∑
n

ṽ(0)2
nφnφny

, (E 1)

and

ṽ(0)2
n = 2

∣∣∣∣A0n

(
x − t1

2σ 2
n

)∣∣∣∣
2

. (E 2)

As Rossby waves move westward (cf. (C 9), (C 13), (C 14)) it thus follows that the
term (∂2/∂x2 − ∂2/∂t2

1 )ṽ(0)ṽ
(0)
y is non-resonant. Analogously, due to (C 7) we have for

ũ(0)ũ
(0)
x

ũ(0)ũ
(0)
x = y2

∑
n

φ2
n

σ 4
n

ṽ
(0)
nt

ṽ
(0)
ntx

= y2
∑

n

φ2
n

2σ 2
n

ṽ(0)2
nt x

(E 3)

and

ṽ(0)2
nt

= 2σ 2
n

∣∣A0n

∣∣2; (
ṽ(0)2

nt

)
x

= 2σ 2
n

∣∣∣∣A0n

(
x − t1

2σ 2
n

)∣∣∣∣
2

x

, (E 4)
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i.e. ũ(0)ũ
(0)
x and its derivatives, entering the right-hand side of (C 56) are also non-

resonant. Another average entering the right-hand side of (C 56), h̃(0)ũ(0), is calculated
in the same way and due to (C 7) we have

h̃(0)ũ(0) = −y
∑

n

φnφy

σ 4
n

ṽ(0)2
nt

(E 5)

which is again not resonant.

The average h̃(1)ṽ(0) + h̃(0)ṽ(1) entering P̄
(3)
h is calculated with the help of represen-

tations (C 22), (C 24), (C 4), and (C 6), (C 25). We obtain

h̃(1)ṽ(0) + h̃(0)ṽ(1) = −Ṽ1y
ṽ(0) + Ṽ0y

ṽ(1) + ṽ(0)W̃0yt1
− yṽ(0)W̃0x

. (E 6)

We find

Ṽ1y
ṽ(0) + Ṽ0y

ṽ(1) = −
∑

n

φnφny

σ 2
n

(
ṽ

(0)
n ṽ

(1)
n

)
t
= 0. (E 7)

The second and the third terms in (E 6) are easy to calculate by using (C 25):

ṽ(0)W̃0yt1
= −

∑
n

φnφny

σ 2
n

ṽ
(0)
n ṽ

(0)
nt1

= −
∑

n

φnφny

σ 2
n

∣∣A0n

∣∣2
t1
, (E 8)

ṽ(0)W̃0x
= −

∑
n

φ2
n

σ 2
n

ṽ
(0)
n ṽ

(0)
nx

= −
∑

n

φ2
n

σ 2
n

∣∣A0n

∣∣2
x

(E 9)

and, hence, the term h̃(1)ṽ(0) + h̃(0)ṽ(1) is also non-resonant.

Finally, for the average ṽ(1)ũ
(0)
y + ṽ(0)ũ

(1)
y in P̄ (3)

u from (C 23) we have

ṽ(1)ũ
(0)
y + ṽ(0)ũ

(1)
y = ṽ(1)(yṼ0)y + ṽ(0)(yṼ1)y + ṽ(0)W̃0xy

− yṽ(0)W̃0t1
. (E 10)

As above, we can show that

ṽ(1)(yṼ0)y + ṽ(0)(yṼ1)y = −
∑

n

φn(yφn)y
σ 2

n

(
ṽ

(0)
n ṽ

(1)
n

)
t
= 0, (E 11)

ṽ(0)W̃0xy
= −

∑
n

φnφny

σ 2
n

∣∣A0n

∣∣2
x
, (E 12)

and

ṽ(0)W̃0t1
= −

∑
n

φ2
n

σ 2
n

(
ṽ

(0)
n ṽ

(1)
n

)
t1

= −
∑

n

φ2
n

σ 2
n

∣∣A0n

∣∣2
t1

(E 13)

This means that ṽ(1)ũ
(0)
y + ṽ(0)ũ

(1)
y is non-resonant, as well.

Thus, the stresses due to the fast motions in (C 56) do not give rise to the evolution
of the slow Rossby and Kelvin waves. At the same time, they do give rise to the
third-order correction of the meridional velocity.
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Appendix F. A brief description of the numerical procedure
and Rankine–Hugoniot conditions

The starting point is the conservation-law formulation of the equatorial RSW
equations:

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1
2
gh2)x + (huv)y = βyhv,

(hv)t + (huv)x +
(
hv2 + 1

2
gh2

)
y
= −βyhu.


 (F 1)

It is well-known that systems of conservation laws admit weak solutions with
discontinuity surfaces. These solutions can be captured as solutions of a corresponding
dissipative system in the limit of vanishing viscosity (the so-called vanishing viscosity
approach, see e.g. Di Perna, 1983), or, alternatively, by specifying the cross-shock
conditions, namely the Rankine–Hugoniot conditions and the entropy condition (the
so-called pseudo non-viscous approach, see e.g. Schär & Smith 1993). A discussion
of equivalence between the two approaches is also presented in that reference. Both
approaches give the same solutions which consist of almost everywhere continuous
field plus localized discontinuity surfaces moving with the ambient fluid velocity
(contact discontinuities) or propagating through the fluid (shock fronts or bores).
Across the bores, mass and momentum are conserved but energy dissipates (cf. e.g.
Whitham 1974). A numerical scheme described below approaches shock solutions in
the first way.

The system (F 1) written for the vector U = (h, hu, hv) has the form

Ut + F (U )x + G(U )y = S(U ). (F 2)

Here F (G) is the flux function in the x-direction (y-direction), and S is the source
term. Note that G(U )⊥ = F (U⊥) where the notation X⊥ = (x1, x3, x2) is used.

Finite-volume schemes compute the evolution of a cell-centered variable Ui,j by
using the values of U in the neighbouring cells. More precisely, they calculate the flux
between two adjacent cells (e.g. Fi−1/2,j ) by using (Ui−1,j and Ui,j )). Given the above-
mentioned symmetry between F and G, in order to construct a two-dimensional
scheme it is sufficient to know how to evaluate the flux for the one-dimensional
Riemann problem between the states Ul and Ur for the following system:

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2
gh2)x = f hv,

(hv)t + (huv)x = 0.


 (F 3)

For a homogeneous system, this procedure is called dimensional splitting, see LeVeque
(2002). In our case, as the problem is inhomogeneous, the numerical flux function
has to be discontinuous at the interface, see Bouchut (2003). The treatment of the
source term is the same as in Bouchut, Le Sommer & Zeitlin (2004): we use a time-
dependent apparent topography Z̃ such that Z̃x = −f v. Thus, at each time step, we
have to resolve the Riemann problem for the one-dimensional shallow-water model
with topography, plus an independent advection equation for v. The topography is
handled following the hydrostatic projection method of Audusse et al. (2003). This
procedure incorporates a topographic forcing in shallow-water Riemann solvers in
such a way that steadiness of stationary states is guaranteed.

We use a relaxation method of Bouchut (2003) as an approximate Riemann solver
for the homogeneous shallow-water equations. Moreover, we use a relaxation solver
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adapted to the computation of dry beds, i.e. allowing for h → 0. A general introduction
to the relaxation schemes as approximate Riemann solvers is given in LeVeque &
Pelanti (2001).

Finally, high-order corrections are applied: we use a second-order time-stepping
scheme, the Heun method, see Bouchut (2003), and for spatial reconstructions the
slope limiter method, see LeVeque (1992). We can summarize the properties of our
numerical procedure as follows:

(i) second order both in space and time,
(ii) preserving stationarity of geostrophically balanced zonal flows,
(iii) conserving potential vorticity if the solution is continuous,
(iv) exactly capturing weak solutions (shocks),
(v) guaranteeing convergence when h → 0.
A typical computation over 50 periods on a 200 × 300 grid is completed after 4000

iterations in 1 hour on a 2000MHz processor (AMD Athlon XP2400).
The idea of a dissipative vorticity change due to discontinuities in gas dynamics

has been studied by Hayes (1957) and Berndt (1966). More recently this analysis was
generalized by Kevlahan (1997). For the shallow-water equations, a potential vorticity
jump formula was derived by Pratt (1983) in the case of straight shocks moving with
a constant speed. In all of these works the along-shock momentum equation was
written in a local reference frame in order to calculate the vorticity jump. Following
this prescription we consider a shock (S) propagating through a material volume V (t)
and we introduce a local reference frame with normal and tangential unit vectors
(n, s) with respect to the shock. This frame is moving at the local speed of the shock
Cnn. The velocity and Bernoulli function in the moving frame are

ū =

(
ū(n)

ū(s)

)
loc

=

(
u(n) − Cn

u(s)

)
loc

, B̄ = gh + ū2/2. (F 4)

With a notation [A] = Afront − Arear the Rankine–Hugoniot conditions are

−Cn [h] +
[
hu(n)

]
=0,

−Cn

[
hu(n)

]
+

[
hu(n)2 + 1

2
gh2

]
=0,

−Cn

[
hu(s)

]
+

[
hu(n)u(s)

]
=0,


 (F 5)

where u(n,s) are the velocity components normal and tangential to the shock. The jump
in B̄ is obtained from the first and the second of the Rankine–Hugoniot conditions
(F 5); see e.g. Lighthill (1978), where f (r) denote front (rear) state, respectively:

[
B̄

]
= −g

4

[h]3

hf hr

. (F 6)

Following the aforementioned works, we obtain the potential vorticity jump across
the shock from the along-front momentum equation:

hū(n) [q] = −∂s

[
B̄

]
. (F 7)

For moving shocks of any shape

[q] =
g

4hū(n)
∂s

[h]3

hf hr

. (F 8)

Note that for shocks with ∂s [h] no change of potential vorticity is possible. We
calculate the rate of change of the amount of vorticity contained in the material
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volume V :
d

dt

∫
V

hq dV = −
∫

(S)

hū [q] dS =
[
B̄

]
A

−
[
B̄

]
B

. (F 9)

Figure 6 shows the breaking of a Kelvin wave of depression and the subsequent PV-
deposit. Choosing V to be the whole southern half-plane, the formula (F 9) suggests
that negative potential vorticity will be deposited. The right hand panel confirms this
result.

We should finally mention that a theory of vorticity transport due to breaking
waves in rotating shallow water on the f -plane was considered recently by Bühler
(2000). It was based on generalized Lagrangian-mean theory (GLM) and confirmed
by numerical simulations. However, its generalization to fully nonlinear processes
on the (equatorial) β-plane is difficult due to the problem of extending the standard
GLM pseudomomentum definition beyond the f -plane (cf. Bühler & McIntyre 1998).
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